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1. Introduction

Soon after the attractor mechanism was first discovered in supersymmetric (BPS) black

holes [1], it was reformulated in terms of motion on an effective potential for the mod-

uli [2]. Ferrara et al demonstrated that the critical points of this potential correspond to

the attractor values of the moduli. More recently, several groups used the effective poten-

tial to show that non-supersymmetric (non-BPS) extremal black holes can also exhibit the

attractor mechanism, thereby creating a new and exciting field of research [3, 4]. Many con-

nections between non-BPS attractors and other active areas of string theory soon revealed

themselves. Andrianopoli et al found that both BPS and non-BPS black holes embedded

in a supergravity with a symmetric moduli space can be studied using the same formalism,

and they uncovered many intricate relations between the two [5, 6]. Dabholkar, Sen and

Trivedi proposed a microstate counting for non-BPS black holes (albeit subject to certain

constraints [7]). Saraikin and Vafa suggested that a new extension of topological string

theory generalizes the Ooguri-Strominger-Vafa (OSV) formula such that it is also valid for

non-supersymmetric black holes [8]. Studying non-BPS attractors could also give insight

into non-supersymmetric flux vacua. Given all these possible applications, it is important

to characterize non-BPS black holes as fully as possible.

There has been a great deal of progress in understanding the near-horizon region of

these non-BPS attractors. The second derivative of the effective potential at the critical

point determines whether the black hole is an attractor, and the location of the critical

point yields the values of the moduli at the horizon; in this way, one can compute the

stability and attractor moduli for all models with cubic prepotential [9, 10]. However, the

effective potential has only been formulated for the leading-order terms in the supergravity

lagrangian. If one wants to include higher-derivative corrections, one can instead use Sen’s

entropy formalism, which incorporates Wald’s formula, to characterize the near-horizon

geometry in greater generality [11]. Sen’s method has led to many new results [12 – 17].

The tradeoff is that this method cannot be used to determine any properties of the solution

away from the horizon.

The BPS attractor flow is constructed from the attractor value z∗BPS = z∗BPS(p
I , qI) by

simply replacing the D-brane charges with the corresponding harmonic functions:

zBPS(~x) = z∗BPS(pI → HI(~x), qI → HI(~x)) (1.1)
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where the harmonic functions are
(

HI(~x)

HI(~x)

)

=

(

hI

hI

)

+
1

|~x|

(

pI

qI

)

Moreover, this procedure can be applied to construct the multi-centered BPS attractor

flow that describes the supersymmetric black hole bound state [18], where the harmonic

functions are generalized to have multiple centers:
(

HI(~x)

HI(~x)

)

=

(

hI

hI

)

+
∑

i

1

|~x − ~xi|

(

(pI)i
(qI)i

)

It is conjectured in [19] that the non-BPS flow can be generated in the same fashion, namely,

by replacing the charges in the attractor value with the corresponding harmonic functions.

However, as will be proven in this paper, this procedure does not work for systems with

generic charge and asymptotic moduli.1

In principle, one could construct the full non-BPS flow (the black hole metric, together

with the attractor flow of the moduli) by solving the equation of motion derived from the

lagrangian. However, this is a second-order differential equation and only reduces to a

first-order equation upon demanding the preservation of supersymmetry. Ceresole et al

have written down an equivalent first-order equation in terms of a “fake superpotential”,

but so far, the fake superpotential can only be explicitly constructed for special charges and

asymptotic moduli [21, 20]. The most generic non-BPS equation of motion is complicated

enough that it has not yet been solved. Similarly, multi-centered non-BPS black holes have

not been studied.

Our goal is to construct the full flow for non-BPS stationary black holes in four di-

mensions. Instead of directly solving the equation of motion, we reduce the action on

the timelike isometry and dualize all 4D vectors to scalars. The new moduli space M3D

contains isometries corresponding to all the charges of the black hole, and the black hole

solutions are simply geodesics on M3D. This method was introduced in [22] and has been

used to construct static and rotating black holes in heterotic string theory [23, 24] and to

study the classical BPS single-centered flow and its radial quantization [25, 26].

In this paper, we work in two specific theories of gravity, but we expect that this

method can be used for any model whose M3D is symmetric. The basic technique is

reviewed in more detail in section 2. In section 3, we show how this method works in a

simple case: the toroidal compactification of D-dimensional pure gravity. Section 4 serves

as an introduction to single-centered attractor flow in N = 2 supergravity coupled to one

vector multiplet, and sections 5 and 6 are dedicated to constructing the full flows for both

BPS and non-BPS single-centered black holes with generic charges. We find that they are

generated by the action of different classes of nilpotent elements in the coset algebra. Both

types of flows are shown to reach the correct attractor values at the horizon. In section 7,

the procedure is generalized straightforwardly to construct both BPS and non-BPS multi-

centered solutions. We use a metric ansatz with a flat spatial slice and we are able to

1This has also been shown in [20].
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recover the BPS bound states described by Bates and Denef. Using the same ansatz, we

are able to build non-BPS multi-centered solutions. Unfortunately, solutions generated

this way turn out to always have charges at each center which are mutually local. The last

section reviews our conclusions and suggests possibilities for future work.

2. Framework

Here we outline the method we will use to construct black hole solutions. This method was

first described in [22]. We first reduce a general gravity action from four dimensions down

to three, and derive the equation of motion. We then specialize to certain theories which

have a 3d description in terms of a symmetric coset space. In such situations, we can easily

find solutions to the equation of motion. The solutions are geodesics (or generalizations

thereof) on the 3d moduli space and they are generated by elements of the coset algebra.

2.1 3D moduli space

We will study stationary solutions in a theory with gravity coupled to scalar and vector

matter. Let the scalars be zi and the vectors be AI . Then the most general ansatz for a

stationary solution in four dimensions is:

ds2 = −e2U (dt + ω)2 + e−2Ugabdxadxb (2.1)

F I = dAI = d
(

AI
0(dt + ω) + AI

)

(2.2)

where a, b = 1, 2, 3 label the spatial directions and bold font denotes three-dimensional

fields and operators. Since none of the fields are time-dependent, we can compactify on the

time isometry and reduce to three-dimensional space M3D. This procedure is called the

c∗-map. In three dimensions, a vector is Hodge-dual to a scalar. The equations of motion

for ω and the gauge fields allow us to define the dual scalars φω and φAI .

We then obtain the 3d lagrangian in terms of only scalars

L =
1

2

√
g

(

− 1

κ
R + ∂aφ

m∂aφngmn

)

(2.3)

where φn are the moduli fields

φn = {U, zi, z̄ ī, φω, AI
0, φAI } (2.4)

and gab is the space time metric and gmn is the metric of a manifold M3D. The system is

3D gravity minimally coupled to a nonlinear sigma model with moduli space M3D. Next,

we will find the equation of motion in this theory.

2.2 Attractor flow equation

The equation of motion of 3D gravity is Einstein’s equation:

Rab −
1

2
gabR = κTab = κ

(

∂aφ
m∂bφ

ngmn − 1

2
gab∂cφ

m∂cφngmn

)

(2.5)
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and the equation of motion of the moduli is:

∇a∇aφn + Γn
mp∂aφ

m∂aφp = 0 (2.6)

For simplicity, we consider only the case where the 3D spatial slice is flat (it is guaranteed

to be flat only for extremal single-centered black holes). Then the dynamics of the moduli

are decoupled from that of the 3D gravity:

Rab = 0 =⇒ ∂aφ
m∂bφ

ngmn = 0 (2.7)

In the multi-centered case, we need to solve the full equations for the moduli as functions of

the 3d coordinates ~x. For single-centered solutions, the moduli only depend on r; to satisfy

the above equations, the motion of the moduli must follow null geodesics inside M3D.

A generic null geodesic flows to the boundary of the moduli space M3D. A single-

centered attractor flow is defined as a null geodesic that terminates at a point on the

U → −∞ boundary and in the interior region with respect to all other coordinates. This

is guaranteed for the BPS attractor by the constraints imposed by the supersymmetry.

To find the single-centered non-supersymmetric attractor flow, one needs to find a way to

construct null geodesics and a constraint that pick out the ones that stop at this specific

component of the boundary. In the next section, we will show that we can do this for models

with special properties, and the method can be easily generalized to find the multi-centered

attractor solution.

2.3 Models with symmetric moduli space

The problem of finding such a constraint in a generic model is not easy. To simplify, we

study any model whose moduli space is a symmetric homogeneous space: M3D = G/H.

When M3D is a homogeneous space, the isometry group G acts transitively on M3D.

H denotes the isotropy group, which is the maximal compact subgroup of G when one

compactifies on a spatial isometry down to (1, 2) space, or the analytical continuation of

the maximal compact subgroup of G when one compactifies on the time isometry down to

(0, 3) space. The Lie algebra g has the Cartan decomposition: g = h⊕ k where

[h,h] = h [h,k] = k (2.8)

When G is semi-simple, the homogeneous space is symmetric, and

[k,k] = h (2.9)

The models with symmetric moduli space includes: D-dimensional gravity toroidally

compactified to four dimensions, certain models of 4D N = 2 supergravity coupled to

vector-multiplet, and all 4D N > 2 extended supergravity. The entropy of the last two

classes is U-duality invariant. In the present paper, we will only consider the first two

classes, namely, the D-dimensional gravity toroidally compactified to four dimensions, and

the 4D N = 2 supergravity coupled to nV vector-multiplet.

The left-invariant current is

J = M−1dM = Jk + Jh (2.10)
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where M is the coset representative, and Jk is the projection of J onto the coset algebra

k. The lagrangian density of the sigma-model with target space G/H is given by Jk as:

L = Tr(Jk ∧ ∗3Jk) (2.11)

The geodesic of the homogeneous space written in terms of the coset representative is

simply

M = M0e
kτ/2 with k ∈ k (2.12)

where M0 parameterizes the initial point, and the 1
2 is for later convenience. A null geodesic

has zero length:

|k|2 = 0 (2.13)

Therefore, in a homogeneous space, we can find the null geodesics that end at an attractor

point by imposing the appropriate constraint on the null elements of the coset algebra.

Since M is defined up to the action of the isotropy group H, in order to read off the

moduli fields from M in an H-independent way, we construct the symmetric matrix using

the metric signature matrix S0:

S ≡ MS0M
T (2.14)

In all systems considered in the present paper, H is the maximal orthogonal subgroup of

G with the correct signature:

HS0H
T = S0 for ∀H ∈ H (2.15)

That is, the isotropy group H preserves the symmetric metric matrix S0. Therefore, S

is invariant under M → MH with H ∈ H. Moreover, as the isotropy group H acts

transitively on the space of of matrices with a given signature, the space of possible S is

the same as the symmetric space G/H. That is, the moduli of G/H can be combined into

the symmetric matrix S. And the current of S is

JS = S−1dS (2.16)

It is easy to perform the projection onto the coset algebra k. The (generalized) or-

thogonality condition of the isotropy group H can be expressed in terms of the subalgebra

element h which is in H = eh as

hS0 + S0h
T = 0 ∀h ∈ h (2.17)

In other words, (hS0) is anti-symmetric: (hS0)
T = −(hS0). Thus the coset algebra, being

the compliment of h, can be defined as the k with (kS0) being symmetric: (kS0)
T = (kS0),

i.e.

kT = S−1
0 kS0 ∀ k ∈ k (2.18)

Therefore, the projection of an element g in g onto the coset algebra k is:

gk =
g + S0g

T S−1
0

2
(2.19)
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For the left-invariant current J = M−1dM , the projection onto k is:

Jk =
J + S0J

T S−1
0

2
(2.20)

It is straightforward to show that the current constructed from S is related to the

projected left-invariant current Jk by:

JS = S−1dS = 2(S0M
T )−1Jk(S0M

T ) (2.21)

The lagrangian in terms of S is thus L = 1
4Tr(JS ∧ ∗3JS). That is, the lagrangian density

is

L =
1

4
Tr(S−1∇S · S−1∇S) (2.22)

which is invariant under the action of the isometry group G:

S → G−1SG where G ∈ G (2.23)

and whose conserved current is:

J = S−1∇S (2.24)

where we have dropped the subscript S in JS , since we will only be dealing with this current

from now on. The equation of motion is the conservation of the current:

∇ · J = ∇ · (S−1∇S) = 0 (2.25)

We now specialize to the single-centered solutions: they correspond to geodesics in the

coset manifold. The spherical symmetry allows the 3d metric to be parameterized as

ds2
3 = C(r)2d~x2 (2.26)

Then the equations of motion involve the operator drr
2C(r)dr, and reduce to geodesic

equations in terms of a parameter τ such that

dr

dτ
= r2C(r) . (2.27)

The function C(r) is then determined from the equations of motion of 3d gravity. The

equations of motion can be written as

d

dτ

(

S−1 dS

dτ

)

= 0 (2.28)

In the extremal limit the geodesics become null, the 3d metric is flat and

τ = −1

r
(2.29)

In the search for multi-centered extremal solutions, where the spherical symmetry is

absent, it is very convenient to restrict to solutions with a flat 3d metric. This is consistent

with the equations of motion as long as the 3d energy momentum tensor is zero everywhere:

Tab = Tr(JaJb) = 0 (2.30)
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The coupled problem with generic non-flat 3d metric is much harder, and exact solutions

are hard to find unless a second Killing vector is present.

Since different values of the scalars at infinity are easily obtained by a G transforma-

tion, to start with, we will consider the flow starting from M0 = 1, and generalize to generic

asymptotic moduli later. For a single-centered solution, the flow of M is M = M0e
kτ/2.

Since all the coset representatives can be brought into the form eg with some g ∈ k by an

H-action, we can write M0 = eg/2, so M = eg/2ekτ/2. And the flow of S is

S(τ) = eg/2ekτeg/2S0 (2.31)

The charges of the solution are read from the conserved currents

J(r) = S−1∇S =
S0e

−g/2keg/2S0

r2
~̂r (2.32)

3. Torus reduction of D-dimensional pure gravity

Now we use the method introduced in the previous section to analyze pure gravity toroidally

compactified down to four dimensions. We explain why the attractor flow generator, k,

needs to be nilpotent, and we find the Jordan forms of k2 and k. Using this information, we

construct single-centered attractor flows. We then generalize to multicentered black holes

in pure gravity and show that these solutions have mutually local charges and no intrinsic

angular momentum.

3.1 Kaluza-Klein reduction

The simplest example of a system that admits a 3d description in terms of a sigma model

on a symmetric space is pure gravity in D dimensions, compactified on a D− 4 torus. The

KK reduction to 4D parameterizes the metric as

ds2
D = ρpq(dyp + Ap

µdxµ)(dyq + Aq
νdxν) +

1√
det ρ

ds2
4 1 ≤ p, q ≤ D − 4 (3.1)

Here yp are the torus coordinates, xµ the coordinates on R3,1, and ρpq the metric of the

torus. A 4D metric with one timelike Killing spinor is then parameterized as

ds2
4 = −u(dt + ωidxi)2 +

1

u
ds2

3 (3.2)

where u = e2U , to connect with the parametrization in the later part of the paper; and

i = 1, 2, 3 denote the 3d space coordinates.

The two expressions combine as

ds2
D = Gab(dya + ω̃a

i dxi)(dyb + ω̃b
jdxj) +

1

− det G
ds2

3 0 ≤ a, b ≤ D − 4 (3.3)

Here ya are the torus coordinates plus time, xi coordinates on R3 and

G =

(

ρpq ρprA
r
0

Ar
0ρrq Ar

0ρrsA
s
0 − u√

det ρ

)

(3.4)
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and ω̃a = (ω̃p, ω̃0) is:

ω̃p = (Ap
i − Ap

0ωi)dxi ω̃0 = ω (3.5)

If the forms ω̃a are dualized to scalars αa as

dαa = − detGGab ∗3 dω̃b (3.6)

the various scalars can be combined into a symmetric unimodular (D−2)× (D−2) matrix

S =

(

Gab + 1
det Gαaαb

1
det Gαa

1
det Gαb

1
det G

)

(3.7)

In terms of the 4D fields that is

S =







ρpq − 1
u
√

det ρ
αpαq ρprA

r
0 − 1

u
√

det ρ
αpα0 − 1

u
√

det ρ
αp

Ar
0ρrq − 1

u
√

det ρ
α0αq Ar

0ρrsA
s
0 − u√

det ρ
− 1

u
√

det ρ
α0α0 − 1

u
√

det ρ
α0

− 1
u
√

det ρ
αq − 1

u
√

det ρ
α0 − 1

u
√

det ρ






(3.8)

The equations of motion derive from the lagrangian density L = Tr∇SS−1∇SS−1,

invariant under S → UT SU for any U in SL(D− 2). As this SL(D− 2) action is transitive

on the space of matrices with a given signature, the space of possible S is the same as

the symmetric space SL(D − 2)/SO(D − 4, 2). Notice that the signature of the stabilizer

SO(D− 4, 2) is appropriate for the reduction from (D− 1, 1) to (3, 0) signature. The usual

reduction from (D−1, 1) to (2, 1) would give a SL(D−2)/SO(D−2), while the Euclidean

reduction from (D, 0) to (3, 0) gives SL(D − 2)/SO(D − 3, 1) [27].

The coset representative under the left SO(D − 4, 2) action can be described in terms

of a set of vielbeins

eA = EA
a (dya + ωa

i dxi) eI =
1

detM
eI
(3) (3.9)

as

M =

(

EA
a 0

1
det E αb

1
det E

)

(3.10)

Then the symmetric SO(D − 4, 2) invariant matrix

S = MS0M
T (3.11)

can be used to read off the solution more easily. Without loss of generality, we can take S0

to be the signature matrix:

S0 = Diag(η,−1) = Diag(1, · · · , 1,−1,−1) (3.12)

The equations of motion are equivalent to the conservation of the SL(D − 2) currents

J = S−1dS. Some of those currents correspond to the usual gauge currents in 4D: the first

D − 4 elements of the last column Ji,D−2 are the KK monopole currents, the first D − 4

elements of the row before the last JD−3,i are the KK momentum currents and the element

JD−3,D−4 is the current for the 3d gauge field ω. Regular 4D solutions must have zero

sources for this current, otherwise ω will not be single valued.
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3.2 Nilpotency

We now show that all the attractor flows are generated by the nilpotent generators in the

coset algebra. To get extremal black hole solutions with a near horizon AdS2 × S2, the

function u must scale as r2 as r goes to zero while the scalars go to a constant. This

makes S diverge as 1
r2 . The most natural way for S to diverge as τ2 for large τ is that k

is nilpotent, with

k3 = 0 . (3.13)

This will be the crucial condition through the whole paper.

3.3 A toy example: hyperkähler euclidean metrics in four dimensions

Not every null geodesic corresponds to extremal black hole solutions. Let’s consider a

simple example: hyperkähler euclidean metrics in 4D.

Although this example is not about a black hole, it is still quite instructive. The 3d

sigma model is SL(2)/SO(1, 1), i.e. AdS2. The coset representative is written as

M =

(

u1/2 0
a

u1/2

1
u1/2

)

(3.14)

and the symmetric invariant

S =

(

u − a2

u − a
u

− a
u − 1

u

)

(3.15)

A geodesic is the exponential of a Lie algebra element in the orthogonal to the stabilizer.

The stabilizer SO(1, 1) is generated by σ1. A null geodesic is hence the exponential of

k = σ3 ± iσ2. This is a nilpotent matrix, k2 = 0, hence M = 1 + τk/2. Take:

k = σ3 + iσ2 =

(

1 1

−1 −1

)

(3.16)

then

M =

(

1 + τ/2 τ/2

−τ/2 1 − τ/2

)

(3.17)

and we can read off the geodesic solution from the invariant

S = MT

(

1 0

0 −1

)

M =

(

1 + τ τ

τ −1 + τ

)

(3.18)

Hence

u =
1

1 − τ
, a = − τ

1 − τ
. (3.19)

Dualizing a, we get

∗dω = −da

u2
=

1

r2
dr u−1 = 1 +

1

r
(3.20)

The 4D Euclidean metric is just the Taub-NUT metric. Notice that the multi-centered

Taub-NUT generalization of the metric is obtained by replacing τ above with some har-

monic function
∑

i
qi

|x−xi| . The sigma model equations of motion are equivalent to the

– 10 –
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conservation of the current J = S−1∇S, and if S is given as above with τ = τ(~x) then the

equation of motion is

∇2τ(~x) = 0 (3.21)

3.4 Single-centered black holes in pure gravity

3.4.1 Constructing the flow generator k

Now we look in detail at the single-centered black holes in pure gravity. Notice that as u

goes to zero S tends asymptotically to a rank one matrix

S = − 1

u
√

det ρ







αpαq αpα0 αp

α0αq α0α0 α0

αq α0 1






(3.22)

hence the matrix k2 should also have rank 1. By inspection of S it is clear that a k2 of

rank higher than one gives a geodesic for which the matrix elements of ρ also diverge as

τ2 so that the scalar fields do not converge to fixed attractor values.

Notice that if k is nilpotent, then S is a polynomial in 1
r , and the various scalars in

the solution will all be simple functions of r for such extremal solutions!

The explicit form for k in terms of the charges is then straightforward to write. Con-

sider the Jordan form of k2: as it is nilpotent, the eigenvalues are all zero. As it is rank

one, it has one single indecomposable block of size two:

(

0 1

0 0

)

. It is written as

k2 = −ηvvT f(P,Q) (3.23)

with v null in the metric η, and f(P,Q) any degree-two homogeneous function of the charge

(P,Q). This form is chosen so that v does not scale with the charge (P,Q).

Then k must have a Jordan form with all eigenvalues zero, one block of size 3:






0 1 0

0 0 1

0 0 0






and possibly some other extra blocks of size two. Alternatively, there is a

subspace V annihilated by k, a subspace V ′ whose image under k sits in V and has the

same dimension as V ′, and a single vector w such that kw ∈ V ′ and is non-zero.

kw ⊂ V ′, kV ′ ⊂ V, kV = 0. (3.24)

From the symmetry of ηK, it follows that the space kV ′ is made of null vectors only, and

that kw is orthogonal to it. Because ηk2 = −vvT , (kw)T ηkw is negative. Because of the

signature of η it is straightforward to see that V ′ can be of dimension at most one; hence

there are no blocks of size 2 in the Jordan form of k.

Taking this into account, the final form of k is simply

k = ηwvT + ηvwT (3.25)
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where v and w are two orthogonal (D − 2)-dimensional vectors with v being null and w

having norm −f(P,Q):

wηv = 0, vηv = 0, wηw = −f(P,Q). (3.26)

Using the fact that in k, the first D − 4 elements of the last column Ki,D−2 are the

magnetic charges, and the first D − 4 elements of the row before the last KD−3,i are the

electric charges, and the element KD−3,D−4 is the Taub-NUT charge, which has to vanish,

we have 2(D − 4) + 1 = 2D − 7 conditions. Together with the three constraints coming

from the norms and orthogonality condition (3.26), they can be used to solve for the 2D−4

degrees of freedom in (v,w).

The full solution of (v,w) requires one to solve some degree-four equations, hence

we’ll leave it in a slightly implicit form. Let (p, q) be two (D − 4)-dimensional vectors

proportional to the magnetic and electric charges, so that the magnetic charge and the

electric charge (P,Q) of the 4D gauge fields are

P =
√

p2 + p · q p Q =
√

q2 + p · q q (3.27)

And we choose f(P,Q) to be

f(P,Q) = p · q (3.28)

The solution of v and w written in terms of (p, q) is

v =
1√
p · q







q + p

−
√

q2 + p · q
−

√

p2 + p · q






, w =

√
p · q
2







q − p

−
√

q2 + p · q
√

p2 + p · q






. (3.29)

and k can be written as

k =







qqT − ppT −
√

q2 + p · q q
√

p2 + p · q p
√

q2 + p · q qT −(q2 + p · q) 0

−
√

p2 + p · q pT 0 p2 + p · q






(3.30)

3.4.2 Full flow

First, for the full flow starting from M0 = 1, the scalars for the attractor solution generated

by this k can be read off from S(τ) = ekτ , by comparing with the form of S in terms of

the 4D fields:

u−2 =

[

1 + (p2 + p · q)
(

τ +
p · q
2

τ2

)][

1 + (q2 + p · q)
(

τ +
p · q
2

τ2

)]

(3.31)

and

ρ = 1 +
(qqT − ppT )τ + [(p2 + p · q)qqT − p·q

2 (p + q)(p + q)T ]τ2

1 + (p2 + p · q)(τ + p·q
2 τ2)

(3.32)

Notice that as τ → ∞, τ−2e−2U has the correct limit P ·Q
2 , which is the entropy where P

and Q are the physical electric and magnetic charges.
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To generalize to arbitrary asymptotic moduli, M(τ) = eg/2ekτ/2, and the flow of S

is (2.31), which can be written as S(τ) = eK(τ)S0, where K(τ) is a matrix function. From

now on, we use lower case k to denote the coset algebra that generates the attractor

flow, and capital K to denote the function which we exponentiate directly to produce the

solution.

We will choose K(τ) to have the same properties as the generator k:

K3(τ) = 0 and K2(τ) rank one (3.33)

The equations of motion ∇ · (S−1∇S) = 0 then simplify considerably with this ansatz. If

one further requires that the subspace image of K2(τ) remains constant everywhere, such

that

K2(τ)∇K(τ) = ∇K(τ)K2(τ) = 0 (3.34)

then the current reduces to

J = S−1∇S = S0

(

∇K(τ) +
1

2
[∇K(τ),K(τ)]

)

S0 (3.35)

and the equations of motion are

∇2K(τ) +
1

2
[∇2K(τ),K(τ)] = 0 (3.36)

which is solved by a harmonic K(τ).

It might appear hard to find a K(τ) that is harmonic and satisfies all the required

constraints. However, by remembering that the constraints dictate K(τ) to have the form:

K(τ) = ηV W T + ηWV T (3.37)

with V being null and doesn’t scale with the charge (P,Q), and W orthogonal to V ev-

erywhere, one can simply pick a constant null vector V = v′ and a harmonic vector W (τ)

everywhere orthogonal to v′:

W (τ) = w′τ + m with v′ · W (τ) = 0 (3.38)

Here m is a (D − 2)-vector and contains the information of asymptotic moduli. Thus an

appropriate K(τ) is built:

K(τ) = k′τ + g (3.39)

where

k′ = ηv′w′T + ηw′v′T g = ηv′mT + ηmv′T (3.40)

Now we need to solve for (v′, w′) for the same charge (P,Q) but in the presence of m.

The form of g guaranteed that

[k′, g] = 0 (3.41)

where we have used the fact that v′ is null and w′ is orthogonal to v′. Therefore, shifting

the starting point of moduli does not change the current as a function of (v,w):

J(v′, w′) = S0

(

k′

r2

)

S0 = S0

(

ηv′(w′)T + ηw′(v′)T

r2
~̂r

)

S0 (3.42)
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Thus, the solution of (v′, w′) in terms of charges solved from the current does not change

as we vary the starting point of the flow, i.e. they do not depend on the asymptotic moduli:

v′(Q) = v(Q) w′(Q) = w(Q) (3.43)

In summary, the flow with arbitrary starting point is simply generated by

K(τ) = ηvW (τ)T + ηW (τ)vT with W = wτ + m (3.44)

where (v,w) only depend on the charges (P,Q) and m gives the asymptotic moduli.

3.4.3 Example: 5D pure gravity compactified on a circle.

Consider for example the case of extremal black holes in D = 5 pure gravity compactified

on a circle. The 3d sigma model is SL(3)/SO(1, 2). The symmetric invariant is

Sgr =







ρ − 1
u
√

ρα1α1 ρA0 − 1
u
√

ρα1α0 − 1
u
√

ρα1

ρA0 − 1
u
√

ρα1α0 ρ(A0)
2 − u√

ρ − 1
u
√

ρα0α0 − 1
u
√

ρα0

− 1
u
√

ρα1 − 1
u
√

ρα0 − 1
u
√

ρ






(3.45)

Then we can calculate S = S0e
kτ using (3.30) and compare the result to Sgr above to solve

for all the scalars. We find that

e−2U =

√

[

1 + (q2 + pq)

(

τ +
pq

2
τ2

)][

1 + (p2 + pq)

(

τ +
pq

2
τ2

)]

(3.46)

ρ =
1 + (q2 + pq)(τ + pq

2 τ2)

1 + (p2 + pq)(τ + pq
2 τ2)

(3.47)

when starting from the identity. If we allow arbitrary g the flow is too complicated to write

explicitly here, but the attractor value of ρ is the same: q/p.

3.5 Multi-centered solutions in pure gravity

In the context of pure gravity compactified on a torus, we can also give some examples

of multi-centered solutions in the same spirit as the ones for BPS solutions in N = 2

supergravity, though some important features of the latter are not present here.

We are interested in solutions given in terms of harmonic functions which can generalize

the single-centered extremal solutions presented above. Similar to the single-centered case,

we exponentiate a matrix function K(~x):

S(~x) = eK(~x)S0 (3.48)

We will choose K(~x) to have the same properties of the generator k:

K3(~x) = 0 and K2(~x) rank one (3.49)

Using a similar argument to the single-centered flow, if we require that the subspace

image of K2(~x) remains constant everywhere, such that K2(~x)∇K(~x) = ∇K(~x)K2(~x) = 0,

then the equations of motion are

∇2K(~x) +
1

2
[∇2K(~x),K(~x)] = 0 (3.50)
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which is solved by a harmonic K(~x).

A multi-centered K(~x) that is harmonic and satisfies all the required constraints can

then be built in the same way as the single-centered one:

K(~x) = ηvW (~x)T + ηW (~x)vT (3.51)

where v is the same constant null vector as in k, and W (~x) is the multi-centered harmonic

function:

W (~x) =
∑

i

wi

|~x − ~xi|
+ m (3.52)

where ~xi is the position of the ith center, and wi is determined by the charges at the ith

center, and m is related to the moduli at infinity. Requiring W (~x) to be orthogonal to

v everywhere gives the following constraints on the {wi,m}: First, taking ~x to infinity, it

gives

v · m = 0 (3.53)

Second, wi are orthogonal to v:

v · wi = 0 (3.54)

In addition to the constraint from the zero Taub-NUT charge condition −bz − cy = 0,

this makes the space of each possible wi only (D − 4)-dimensional. That is, though W

is a (D − 2)-vector, one has only (D − 4) independent harmonic functions to work with,

because of the orthogonality to v and the requirement of no timelike NUT charges. This

makes the solution relatively boring.

The multi-centered solution in pure gravity does not have the characteristic features of

the typical BPS multi-centered solution in N = 2 supergravity, where many centers with

relatively non-local charges form bound states which carry intrinsic angular momentum.

The basic reason is that when the ansatz K(~x) = ηvW T (~x) + ηW (~x)vT is used, the

second term of the conserved currents J = S0(∇K + 1
2 [∇K,K])S0 drops out. The first

result is that the charges of the various centers in the solution can be read off directly

from (v,wi), and they do not depend on the positions, charges of the other centers. Thus,

there is no constraint on the position of each center as in the N = 2 BPS multi-centered

solution; centers can be moved around freely.

Moreover, the condition of no timelike Taub-NUT charge is a linear constraint on the

charges at each center which results in a static 4D solution, as ∗dω = 0 leads to ω = 0.

Therefore, no angular momentum is present.

4. Attractor flows in G2(2)/(SL(2, R) × SL(2, R))

We now tackle a more complicated subject: N = 2 supergravity coupled to one vector

multiplet. First, we reduce the theory down to three dimensions and derive the metric for

the resulting moduli space, which is the coset G2(2)/(SL(2, R)×SL(2, R)).2 We then discuss

the Cartan and Iwasawa decompositions of the group G2(2), which we use to construct the

2Other work on this coset space has appeared recently, including [28 – 30].
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coset algebra and translate the flow of coset representative into the flow of the moduli

fields, respectively. We then specify the representation of G2(2) we will be working with,

and describe the form of attractor flow generators in this representation.

4.1 The moduli space M3D

The 3d moduli space for N = 2, d = 4 supergravity coupled to nV vector multiplets is well-

studied, for example in [31 – 33]. Some of the main results are compiled in the appendix.

Here we briefly review the essential points.

The bosonic part of the action is:

S = − 1

16π

∫

d4x

√

g(4)
[

R − 2gij̄dzi ∧ ∗4dz̄j̄ − F I ∧ GI

]

(4.1)

where I = 0, 1 . . . nV , and GI = (ReN )IJF J + (ImN )IJ ∗ F J . For a model endowed with

a prepotential F (X),

NIJ = FIJ + 2i
(ImF · X)I(ImF · X)J

X · ImF · X (4.2)

where FIJ = ∂I∂JF (X). We reduce to three dimensions, dualizing the vectors (ω,AI) to

the scalars (σ,BI), and renaming AI
0 as AI . The metric of M∗

3D is then

ds2 = dU · dU +
1

4
e−4U (dσ + AIdBI − BIdAI) · (dσ + AIdBI − BIdAI) (4.3)

+gij̄(z, z̄)dzi · dz̄j̄ +
1

2
e−2U [(ImN−1)IJ(dBI + NIKdAK) · (dBJ + N JLdAL)]

It is a para-quaternionic-Kähler manifold. Since the holonomy is reduced from SO(4nV +

4) to Sp(2, R) × Sp(2nV + 2, R), the vielbein has two indices (α,A) transforming under

Sp(2, R) and Sp(2nV + 2, R), respectively. The para-quaternionic vielbein is the analytical

continuation of the quaternionic vielbein computed in [34]. The explicit form is given in

the appendix.

For nV = 1, XI = (X0,X1). For our purpose, we choose the prepotential

F (X) = −(X1)3

X0
(4.4)

The metric of M∗
3D with one-modulus is (4.3) with gzz̄ = 3

4y2 and N and (ImN )−1 being

N =

(

−(2x − iy)(x + iy)2 3x(x + iy)

3x(x + iy) −3(2x + iy)

)

ImN−1 = − 1

y3

(

1 x

x 3x2 + y2

)

The isometries of the M∗
3D descend from the symmetries of the 4D system. The gauge

symmetries in 4D give shifting isometries of M∗
3D, whose associated conserved charges are:

qIdτ = JAI = PAI − BIPσ, pIdτ = JBI
= PBI

+ AIPσ , kdτ = Jσ = Pσ

(4.5)
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a11

Lh
+

Figure 1: Root Diagram of Cartan Decomposition of G2(2)

where the momenta {Pσ , PAI , PBI
} are

Pσ =
1

2
e−4U (dσ + AIdBI − BIdAI) (4.6)

PAI = e−2U [(ImN )IJdAJ +(ReN )IJ(ImN−1)JK(dBK +(ReN )KLdAL)]−BIPσ (4.7)

PBI
= e−2U [(ImN−1)IJ(dBJ + (ReN )JKdAK)] + AIPσ (4.8)

Here τ is the affine parameter defined as dτ ≡ −∗3 sin θdθdφ. (p0, p1, q1, q0) are the D6-D4-

D2-D0 charges, and k the Taub-NUT charge. A non-zero k gives rise to closed time-like

curves, so we will set k = 0 from now on.

Note that the time translational invariance in 4D gives rise to the conserved current

JU = PU + 2σJσ + AIJAI + BIJBI (4.9)

where PU = 2dU . The corresponding conserved charge is the ADM mass: 2MADMdτ = JU .

4.2 Extracting the coordinates from the coset elements

The metric (4.3) for the case nV = 1 describes an eight-dimensional manifold with coordi-

nates φn = {u, x, y, σ,A0, A1, B1, B0}. This manifold is the coset space G2(2)/(SL(2, R) ×
SL(2, R)). The root diagram for the Cartan decomposition of G2(2) is shown in figure 1.

The six roots that lie on the horizontal and vertical axes {L±
h , L3

h, L±
v , L3

v} are the six

non-compact generators of the subgroup H = SL(2, R)h × SL(2, R)v :

[L3
h/v, L

±
h/v] = ∓L±

h/v, [L+
h/v, L

−
h/v] = 2L3

h/v (4.10)
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0
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a

Figure 2: Root Diagram of Isometry of M3D = G2(2)/(SL(2, R) × SL(2, R)). {u,y,x,

σ,A0,A1,B1,B0} generates the solvable subgroup.

and the two vertical columns of eight roots {aαA} are the basis of the subspace K.

{a1A, a2A} for each A is a spin-1/2 doublet under the horizontal SL(2, R):

[L3
h,

(

a1A

a2A

)

] =

(

−1
2a1A

1
2a2A

)

[L+
h ,

(

a1A

a2A

)

] =

(

0

a1A

)

[L−
h ,

(

a1A

a2A

)

] =

(

−a2A

0

)

And {aα1, aα2, aα3, aα4} for each α span a spin-3/2 representation of the vertical SL(2, R):

[L3
v,











aα1

aα2

aα3

aα4











] =











−3
2aα1

−1
2aα2

1
2aα3
3
2aα4











[L+
v ,











aα1

aα2

aα3

aα4











] =











0

3aα1

2aα2

aα3











[L−
v ,











aα1

aα2

aα3

aα4











] =











−aα2

−2aα3

−3aα4

0











All the commutators can be easily read off from the Root diagram (1), we will only write

down the following ones which will be useful later.

[a11, a14] = −1

3
[a12, a13] = −4L+

h [a21, a24] = −1

3
[a22, a23] = −4L−

h (4.11)

Being semisimple, the algebra of G2(2) has the Iwasawa decomposition g = h⊕ a⊕ n,

where a is the maximal abelian subspace of k, and n is the nilpotent subspace of the positive

root space Σ+ of a. In figure 2, we show the Iwasawa decomposition of G2(2). The two

Cartan generators in a are {u,y}, and {x,σ,A0,A1,B1,B0} span a nilpotent subspace n:

n7 = 0 for n ∈ n. a and n together generate the solvable subgroup Solv of G, which act
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transitively on M3D = G2(2)/SL(2, R) × SL(2, R). In particular, y generates the rescaling

of y, and {u,x,σ,A0,A1,B1,B0} generates the translation of {U, x, σ,A0, A1, B1, B0}.
The moduli space M3D can be parameterized by the solvable elements:

Σ(φ) = eUu+(ln y)yexx+AIAI+BIBI+σσ (4.12)

The origin of the moduli space

a = A0 = A1 = B1 = B0 = 0 x = 0 y = u = 1 (4.13)

corresponds to Σ(φ) = 1.

In figure 2, the isometries are plotted according to their eigenvalues under the two

Cartan generators u and y [31]. {u,y} are related to aαA by:3

u = −1

8
[(a11 + a24) − (a13 + a22)] y =

1

8
[3(a11 + a24) + (a13 + a22)] (4.15)

The three generators {σ,u, σ̂} on the horizontal axis and {x,y, x̂} on the vertical axis

form the horizontal and vertical SL(2, R), respectively. The vertical SL(2, R) generates the

duality invariance. Denote the two vertical columns of eight isometries as











ξ21 ξ11

ξ22 ξ12

ξ23 ξ13

ξ24 ξ14











≡











−Â0 B0

−3Â1 3B1

B̂1 −A1

−B̂0 A0











{ξ1A, ξ2A} for each A span a spin-1/2 representation of the horizontal SL(2, R), and

{ξα1, ξα2, ξα3, ξα4} for each α span a spin-3/2 representation of the vertical SL(2, R).

Parameterizing the coset representative M as the solvable elements, the symmetric

matrix S can be written in terms of the eight coordinates φn, from the solvable elements

Σ

S(φ) = Σ(φ)S0Σ(φ)T (4.16)

The coordinates are read off from the symmetric matrix S.

4.3 Nilpotency of the attractor flow generator k

The near-horizon geometry of the 4D attractor is AdS2 × S2, i.e.

e−U →
√

VBH|∗τ as τ → ∞ (4.17)

In terms of the variable u ≡ e2U

u → 1

VBH
τ−2 as τ → ∞ (4.18)

3The matrix representation of u and y are

u = Diag[0,
1

2
,−

1

2
, 0,−

1

2
,
1

2
, 0] y = Diag[1,−

1

2
,−

1

2
,−1,

1

2
,
1

2
, 0] (4.14)
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The solvable element is

M = eUu+... ∼ u
1

2
u (4.19)

As the flow goes to the near-horizon, u → 0

M(τ) ∼ u−ℓ/2 ∼ τ ℓ (4.20)

where −ℓ is the lowest eigenvalue of u. That is, M(τ) is a polynomial function of τ .

On the other hand, since the geodesic flow is generated by k via

M(τ) = M(0)ekτ/2 (4.21)

i.e., M(τ) is an exponential function of τ . To reconcile the two statements, k must be

nilpotent:

kℓ+1 = 0 (4.22)

That is, the element in k that generates the attractor flow is nilpotent. Moreover, by

looking at the weights of the fundamental representation of G2, we see that ℓ = 2

k3
∗ = 0 (4.23)

Moreover, the nilpotency of the attractor flow generators guarantees that it is null:

k3 = 0 =⇒ (k2)2 = 0 =⇒ Tr(k2) = 0 (4.24)

which means that k is null.

4.4 Properties of attractor flow

The scalar moduli space is parameterized by a symmetric 7×7 matrix S which sits in G2(2),

i.e. preserves a non-degenerate three form wijk such that ηis = wijkwstuwmnoǫ
jktumno is a

metric with signature (4, 3) normalized so that η2 = 1. To facilitate the comparison with

the pure 5D gravity case we decompose 7 as 3 ⊕ 3̄ + 1 of SL(3) and pick as non-zero

components of w the 3 ∧ 3 ∧ 3, 3̄ ∧ 3̄ ∧ 3̄ and 3 ⊗ 3̄ ⊗ 1 as

w = dx1 ∧ dx2 ∧ dx3 + dy1 ∧ dy2 ∧ dy3 − 1√
2
dxa ∧ dya ∧ dz (4.25)

The resulting expression for η is

η = dxadya − dz2 (4.26)

We know that k must be an element of G2(2), hence also of SO(4, 3). As in the pure

gravity case, we choose the representation such that

S0kS0 = kT S0k
2S0 = (k2)T (4.27)

In this base a G2(2) Lie algebra element is given as

k =







Aj1
i1 ǫi1j2kv

k
√

2wi1

ǫi2j1kwk −Ai2
j2 −

√
2vi2

−
√

2vj1
√

2wj2 0






(4.28)
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Here A is a traceless 3 × 3 matrix. S is a symmetric element in G2(2) with signature

{1,−1,−1, 1,−1,−1, 1}, i.e. S = MS0M
T with

S0 =







η1 0 0

0 η1 0

0 0 1






= Diag(1,−1,−1, 1,−1,−1, 1) (4.29)

where η1 is the one for pure gravity.

If the gauge field is turned off, then S is block diagonal

S|F=0 =







Sgr 0 0

0 S−1
gr 0

0 0 1






(4.30)

where Sgr is the same as the one for pure 5D gravity. Turning on a non-zero 5D vector

field corresponds to a more general S:

S = ekT
1 (S|F=0)e

k1 (4.31)

with k1 a G2(2) Lie algebra matrix with w1 equal to the fifth component of the gauge field,

v2 equal to the time component of the gauge field and w3 equal to the scalar dual to the

three-dimensional part of the gauge field.

In this representation, (x, y) can be extracted from symmetric matrix S via:

x(τ) = −S35(τ)

S33(τ)
y(τ)2 =

S33(τ)S55(τ) − S35(τ)2

S33(τ)2
(4.32)

and u via:

u(τ) =
1

√

S33(τ)S55(τ) − S35(τ)2
(4.33)

The 4D gauge currents sit in J = S−1∇S, where J12(J31) is again the elec-

tric(magnetic) current for the KK photon, J32 the timelike NUT current, and J72(J51)

the electric(magnetic) current for the reduction of the 5D gauge field.

J32 = −2Jσ J12 =
√

2JA0 J72 =
2

3
JA1 J51 = −

√
2JB1

J31 =
√

2JB0
(4.34)

Moreover,

J22 − J33 = 2JU (4.35)

We use Q to denote the charge matrix, where it relates to the D-brane charge {p0, p1, q1, q0}
and the vanishing NUT charge k by

(Q31,Q51,Q72,Q12) =

(√
2p0,−

√
2p1,

2

3
q1,

√
2q0

)

Q32 = −2k = 0 (4.36)

Since k is nilpotent: k3 = 0,

S = ekτS0 =

(

1 + kτ +
1

2
k2τ2

)

S0 (4.37)
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The AdS2×S2 near-horizon geometry of the 4D attractor dictates u = 1
VBH|∗ τ−2 as τ → ∞.

Therefore, the flow generator k can be obtained by

k2 = 2VBH|∗(uS|u→0)S0 (4.38)

Computing k2 using S constructed from the solvable elements Σ(φ) shows that k2 is of

rank two, its Jordan form has two blocks of size 3. In fact, there are only two third-degree

nilpotent orbits in G2(2), both of rank two [?]. Thus k2 can be written as

k2 =
∑

a,b=1,2

vav
T
b cabS0 (4.39)

with va null and orthogonal to each other: va · vb ≡ vT
a S0vb = 0, and cab depends on the

particular choice of k. Thus k can be expressed as:

k =
∑

a=1,2

(vaw
T
a + wav

T
a )S0 (4.40)

where each wa is orthogonal to both va: wa · vb = 0, and wa satisfy

wa · wb = cab (4.41)

Parallel to the pure gravity case, the single-centered attractor flow is constructed as

S(τ) = eK(τ)S0, where we choose K(τ) to have the same properties as the generator k:

K3(τ) = 0 and K2(τ) rank two (4.42)

This determines K(τ) = kτ + g where

k =
∑

a=1,2

[vaw
T
a + wav

T
a ]S0 and g =

∑

a=1,2

[vam
T
a + mav

T
a ]S0 (4.43)

where the two 7-vectors ma’s are orthogonal to va and contain the information of asymptotic

moduli. Using [[k, g], g] = 0, the current is reduced to

J =
S0(k + 1

2 [k, g])S0

r2
~̂r (4.44)

from which we obtain va and wa in terms of the charges and the asymptotic moduli.

5. Flow generators in the G2(2)/(SL(2, R) × SL(2, R)) model

We now explicitly construct the generators of single-centered attractor flows. We start

with the BPS flow which is associated with a specific combination of the coset algebra

generators aαA. It can be derived from the condition of preservation of supersymmetry.

We then construct the non-BPS attractor flow generator in analogy with the BPS one. In

section 5.2, we write kBPS and knonBPS in terms of the va and wa vectors. This form will

be especially helpful in generalizing to the multi-centered case.
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5.1 Construction of flow generators

5.1.1 Constructing kBPS using supersymmetry

To describe BPS trajectories it is useful to remember that the stabilizer of S in G2(2) is

SO(1, 2) × SO(1, 2), corresponding to the elements of G2(2) which are antisymmetric after

multiplication by S0. Geodesics are exponentials of elements that are symmetric after

multiplication by S0. Such elements sit in a (2,4) representation of SO(1, 2)× SO(1, 2). A

BPS trajectory is highest weight for the first SO(1, 2). Labelling the symmetric generators

as aαA under the two SO(1, 2) groups, a BPS trajectory is generated by

kBPS = aαACAzα . (5.1)

The twistor z and the coefficients CA are fixed in terms of the charges of the extremal BPS

black hole and the condition of zero time-like NUT charge.

To see why this is true, expand the coset element kBPS that generates the BPS attractor

flow using aαA:

kBPS = aαACαA (5.2)

where CαA are conserved along the flow. On the other hand, the conserved currents in the

homogeneous space are constructed by projecting the one-form valued Lie algebra g−1 · dg

onto k, which gives the vielbein in the symmetric space:

g−1dg|k = aαAV αA (5.3)

where V αA is conserved:
d

dτ

(

V αA
a φ̇a

)

= 0 (5.4)

Therefore, the expansion coefficients of kBPS are

CαA = V αA
a φ̇a (5.5)

In terms of the vielbein, the supersymmetry condition that gives the BPS geodesics are

written as [33]:

V αAzα = 0 (5.6)

That is:

V αA
a φ̇azα = 0 =⇒ CαAzα = 0 (5.7)

Define zα = ǫαβzβ ,

CαA = CAzα (5.8)

Therefore, the coset element kBPS is expanded by the coset algebra basis aαA as kBPS =

aαACAzα.

Note that kBPS has five parameters {CA, z} where A = 1, . . . , 4. As will be shown later,

z can actually be determined by {CA} and moduli at infinity. So the geodesic generated

by kBPS is indeed a four-parameter family. It is easy to show that kBPS is null, but more

importantly, it is nilpotent:

k3
BPS = 0 (5.9)

As will be shown later, kBPS indeed gives the correct BPS attractor flow.

– 23 –



J
H
E
P
1
2
(
2
0
0
7
)
0
9
3

5.1.2 Constructing kNonBPS

To construct the non-BPS attractor flow, one needs to find an element in the coset algebra

distinct from kBPS that satisfies:

k3
NonBPS = 0 (5.10)

The hint again comes from the BPS generator. Note that kBPS = aαAPAzα can be written

as:

kBPS = e−zL−

h k0
BPSezL−

h (5.11)

where k0
BPS spans only the right four coset generators a1A:

k0
BPS = a1ACA (5.12)

That is, kBPS is generated by starting with the element spanning the four generators anni-

hilated by the horizontal SL(2) raising operator L+
h , then conjugating with the horizontal

SL(2) lowering operator L−
h . And it is very easy to show that (k0

BPS)3 = 0, which proves

(kBPS)3 = 0.

In G2(2)/SL(2, R)2, there are two third-degree nilpotent generators in total. And

since there are only two SL(2, R)’s inside H, a natural guess for a non-BPS solution is

to look at vectors with fixed properties under the second SL(2, R) group. An interesting

condition is to have positive charge under some rotation of L3
v, i.e. an SL(2, R) rotation

of
∑

A=1,2 aαACαA. Therefore, this suggests to us to start with the element spanning the

four generators annihilated by the square of the vertical SL(2, R) raising operator (L+
v )2

and then conjugate with the vertical SL(2, R) lowering operator L−
v :

kNonBPS(z) = e−zL−

v k0
NonBPSezL−

v (5.13)

where

k0
NonBPS = aαaC

αa where α, a = 1, 2. (5.14)

And one can show that: (k0
NonBPS)3 = 0, which proves (kNonBPS)3 = 0. Moreover,

(kNonBPS)2 is rank two.

As long as one can pick the coefficients CαA and the twistor z that describes the

SO(1, 2) direction to be such that the time NUT charge is zero, this generator will give

nice non-BPS extremal black holes. All the known non-BPS solutions may be recovered

this way, and more, as this construction gives absolute freedom to pick the charges and

moduli at infinity for the black hole (clearly for certain values of charges and moduli the

solution will crash into a naked singularity, but this is to be expected from comparison

with the BPS case)

5.2 Properties of flow generators

5.2.1 Properties of kBPS

We now turn to solving for va and wa in (4.40) in terms of CA and z. First, from (4.39)

we know that the null space of k2 is five-dimensional and the va span the two-dimensional
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complement of this null space. For kBPS = aαACAzα the null space of (kBPS)2 does not

depend on CA. Therefore, the va depend only on the twistor z = z2/z1.

Recall that we are using the basis where k has the form (4.28). From inspection of

k2
BPS, we find that (v1, v2) can always be chosen to have the form:4

v1 = (V1,−η1V1, 0) v2 = (−V2, η1V2,
√

2) (5.17)

where η1 is a 3d metric of signature (1,−1,−1), and V1, V2 are two three-vectors with

V1 · V1 = 0 V1 · V2 = 0 V2 · V2 = −1 (5.18)

Since any linear combination of (v1, v2) forms a new set of (v1, v2), this means in particular

that any v2 + cv1 gives a new v2. Looking at the forms of (v1, v2), we see that V2 is defined

up to a shifting of V1 as V2 = V 0
2 − cV1.

An explicit computation shows that V1 and V2 are given by the twistor z and u as

V1 =







(z1)2 + (z2)2

(z1)2 − (z2)2

2z1z2






V2 =

1

z1u2 − z2u1







z1u1 + z2u2

z1u1 − z2u2

z1u2 + z2u1






. (5.19)

where the twistor u = u2

u1 is related to c by

u = −1 + 2cz

1 − 2cz
z (5.20)

The twistor representations5 of V1 and V2 are

V αβ
1 = 2zαzβ V αβ

2 = zαuβ + zβuα (5.24)

4When solving for (v, w), there is some freedom in the choice of (v1, v2) and (w1, w2): firstly, a rotational

freedom

(v1, v2) → (v1, v2)

 

R11 R12

R21 R22

!

and (w1, w2) → (w1, w2)

 

R11 R12

R21 R22

!

(5.15)

where R is orthogonal: RRT = 1 Secondly, a rescaling freedom:

va → rva and wa →
1

r
wa (5.16)

5With the inner product of three-vectors defined as

va · vb = v
T
a η1vb (5.21)

The twistor representation of a three-vector v = (x, y, z) is

σv = xσ0 + yσ3 + zσ1 =

 

x + y z

z x − y

!

(5.22)

Its length is

v
T
η1v = det(σv) = x

2 − y
2 − z

2 (5.23)
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where we have used the rescaling freedom to set z1u2 − z2u1 to be 1. Note that for the

BPS case, the twistor u is totally arbitrary.

Now we solve for wa. The condition that wa are orthogonal to va dictates that they

have the form:

w1 = (W1, η1W1, 0) w2 = (W2, η1W2, 0) (5.25)

where W1 and W2 are linearly independent, and are related to the charges by wa ·wb = cab:

W1 · W1 =
1

2
c11 W1 · W2 =

1

2
c12 W2 · W2 =

1

2
c22 (5.26)

Recall that V2 is defined up to a shift by V1: V2 = V 0
2 − cV1. The consequence is that W1

is defined up to a shift by W2: W1 = W 0
1 + cW2. Note that the numerical factors in front

of V1 and W2 are opposite. Write down (W 0
1 ,W2) in terms of (CA, z):

W 0
1 =

1

4z







(C2 + C4) + (C1 + C3)z

(C2 − C4) + (C1 − C3)z

2C3 + 2C2z






W2 =

1

2







−(C2 + C4) + (C1 + C3)z

−(C2 − C4) + (C1 − C3)z

−2C3 + 2C2z







(5.27)

The twistor representations of W1 and W2 are

W1 =

(

C1u2 − C2u1 C2u2 − C3u1

C2u2 − C3u1 C3u2 − C4u1

)

W2 =

(

C1z2 − C2z1 C2z2 − C3z1

C2z2 − C3z1 C3z2 − C4z1

)

(5.28)

Define the totally symmetric Pαβγ :

P 111 = C1 P 112 = C2 P 122 = C3 P 222 = C4 (5.29)

Then the three-vectors (W1,W2) span the four dimensional space

(W α
1 ,W α

2 )BPS = (Pαβγuγ , Pαβγzγ) (5.30)

5.2.2 Properties of kNonBPS

The form of va for the non-BPS case is only slightly different from the BPS case: the two

vectors va can be chosen to have the form:

v1 = (V1, η1V1, 0) v2 = (V2,−η1V2,
√

2) (5.31)

where V1, V2 are two three-vectors satisfying the same condition as the BPS ones (5.18).

Again, the vectors V1 and V2 can be written as (5.19), and the twistor representations are

given in (5.24) with one major difference: u is no longer arbitrary, but is determined by

CαA as:

u =
u2

u1
=

C22

C12
(5.32)

The forms of (w1, w2) are also slightly different from the BPS one (5.25)

w1 = (W1,−η1W1, 0) w2 = (W2, η1W2, 0) (5.33)

– 26 –



J
H
E
P
1
2
(
2
0
0
7
)
0
9
3

The (W1,W2) can be written in terms of (Cαa, z) thus:

W1 =
1

2(C22z1−C12z2)







[(C11C22−C12C21)z2+(C22)2]+[C11C22−C12C21+(C12)2]

−[(C11C22−C12C21)z2+(C22)2]+[C11C22−C12C21+(C12)2]

2[(C11C22−C12C21)z+C12C22]







W2 = −1

2







z[C11z2 + (3C12 − C21)z − 2C22] + [C11z + C12 − C21]

−z[C11z2 + (3C12 − C21)z − 2C22] + [C11z + C12 − C21]

2[C11z2 + (2C12 − C21)z − C22]






(5.34)

In terms of u = u2

u1 = C22

C12 , the twistor representation of W1 and W2 are:

W αβ
1 = uαuβ + (C11u2 − C12u1)zαzβ (5.35)

W αβ
2 = (zαuβ + uαzβ) + (C21 − C11z − 3u1)zαzβ (5.36)

As a consequence, the precise value of u is an extra constraint on the vectors wa, and there

is only a three-dimensional space of them, with (W1,W2) a linear combination of (0, V1),

(V1, 0) and (uαuβ , 2V2).

(W1,W2)NonBPS = m(0, V1) + n(V1, 0) + ℓ(uαuβ , 2V2) (5.37)

6. Single-centered attractor flows in G2(2)/(SL(2, R) × SL(2, R)) model

Now that we have completely characterized the generators of single-centered attractor flow,

we can lift the geodesics to four-dimensional black hole solutions. After some calculational

effort, we find that the BPS solution is given in terms of harmonic functions. Next, we

show that the non-BPS case is qualitatively different, and the final solutions cannot be

formulated so simply.

6.1 BPS attractor flow

6.1.1 Lifting a geodesic to 4D

We have already noted that the flow starting from generic asymptotic moduli (x0, y0) is

generated by M(τ) = e(kτ+g)/2, with g defined before in (4.43). The matrix g has the same

form as k. Therefore, in the BPS case, it has the expansion

gBPS = aαAzαGA (6.1)

where the twistor z is the same as the one in kBPS. The flow of (x, y) and u can be extracted

from the symmetric matrix S(τ) = M(τ)S0M(τ)T via (4.32) and (4.33). Using k3
BPS = 0

and g3 = 0, S(τ) = ekτ+gS0 is a quadratic function of τ :

S55(τ)BPS = αB(τ) + βB(τ) − 1

S35(τ)BPS = γB(τ) + δB(τ) (6.2)

S33(τ)BPS = ǫB(τ) + ζB(τ) − 1
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where {αB(τ), γB(τ), ǫB(τ)} are quadratic functions of τ , and {βB , δB , ζB} are linear func-

tions of τ :

αB(τ) = z2(H2H4 − (H3)2) + z(H2H3 − H1H4) + (H1H3 − (H2)2)

βB(τ) = (H2 − H4)z + (H3 − H1)

γB(τ) = −1

2

(

(H1H4 − H2H3)(z2 − 1) + 2(H2(H2 + H4) − H3(H1 + H3))z
)

δB(τ) = −1

2
((H1 + H3)z − (H2 + H4))

ǫB(τ) = (H1H3 − (H2)2)z2 + (H1H4 − H2H3)z + (H2H4 − (H3)2)

ζB(τ) = 2(H2z + H3) (6.3)

where HA is a linear function of τ defined as HA(τ) ≡ CAτ + GA.

The attractor values are reached when τ → ∞ along the geodesic:

x∗
BPS = −(k2S0)35

(k2S0)33
y∗BPS =

√

(k2S0)33(k2S0)55 − (k2S0)
2
35

(k2S0)33
(6.4)

and

u∗
BPS =

1
√

(k2S0)33(k2S0)55 − (k2S0)235
(6.5)

The asymptotic moduli (x0, y0) can be expressed in terms of (GA, z) by extraction from

S = egS0.

Using this technique, one can construct all BPS single-centered black holes. The

charges of each black hole can be read off from the current J using (4.34). One example

is given in figure 3, where we parametrically plot x(τ) and y(τ) for a BPS black hole with

charges (p0, p1, q1, q0) = (5, 2, 7,−3) and attractor point (x∗, y∗) = (0.329787, 0.788503).6

6.1.2 4D solution for given set of charges

To get the solution for a specific set of charges requires more effort. In this section, we

present the analytical result for any set of charges (pI , qI).

The ten parameters in kBPS and g are {z, u,CA, GA}, among which the twistor u is

arbitrary, corresponding to the freedom of the shift by (v1, w2) in the definition of (v2, w1):

(v2, w1) → (v2 +cv1, w1−cw2). The remaining true parameters are enough to parameterize

the four D-brane charges (pI , qI) and the arbitrary asymptotic moduli (x0, y0) under the

condition of vanishing Taub-NUT charge and fixing u0 = 1. We now solve for kBPS and g

for the given D-brane charges and (x0, y0), using the eight constraints, namely, 4 charges

and zero Taub-NUT charge plus 3 asymptotic moduli, to fix CA and GA, leaving the other

twistor z unfixed.7

For the sake of simplicity, we will denote kBPS by k for the rest of this section. Then

the current J(Q) = kT

r2 gives the five coupled equations:

Q = S0

(

k +
1

2
[k, g]

)

S0 (6.6)

6The discriminant of the charge (5, 2, 7,−3) is positive, so this is indeed a BPS solution.
7The twistor z can be left unfixed because we will not specify the asymptotic values of the scalars with

translational invariance, namely, {a, AI , BI}. Fixing them can fix the twistor z.
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Hx*,y*L

Hx1,y1L

Hx2,y2L

Hx3,y3L

Hx4,y4L

-1.0 -0.5 0.5 1.0 1.5 2.0
x

1

2

3

4

y

Figure 3: Sample BPS flow. The attractor point is labeled (x∗, y∗). The initial points of each flow

are given by (x1 = 1.5, y1 = 0.5), (x2 = 2, y2 = 4), (x3 = −0.2, y3 = 0.1), (x4 = −1, y4 = 3)

In order to show that the BPS flow can be expressed in terms of harmonic functions:

H(τ) = Qτ + h with Q = (pI , qI) and h = (hI , hI) (6.7)

we will solve g in terms of h instead of (x0, y0). The four h’s relate to the asymptotic

moduli by

x0 = x∗(Q → h) y0 = y∗(Q → h) u0 = u∗(Q → h) (6.8)

and there is one extra degree of freedom to be fixed later.

To evaluate [k, g], we first use the commutation relation (4.11) to obtain

[a1ACA, a1BGB ] = 〈C,G〉(−4L+
h ) (6.9)

where the product between CA and GA is defined as 〈C,G〉 ≡ C1G4 − 3C2G3 + 3C3G2 −
C4G1. Then twisting Eq (6.9) with the twistor z as in (5.11) gives the commutator of k

and g with the same twistor z:

[k, g] = [aαAzαCA, aβBzβGB ] = 〈C,G〉Θ (6.10)

where Θ is defined as Θ ≡ − 4
1+z2 e−zL−

h L+
h ezL−

h . On the other hand, using (4.43),

[k, g] = (v2v
T
1 − v1v

T
2 )S0(w2 · m1 − w1 · m2) (6.11)
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Θ can also be written as Θ = (v2v
T
1 − v1v

T
2 )S0, and we can check that (w2 ·m1−w1 ·m2) =

〈C,G〉.
First, separate from GA the piece which has the same dependence on (h, z) as CA on

(Q, z):

GA = GA
h + EA with GA

h ≡ CA(Q → h, z) (6.12)

That is, g contains two pieces:

g = gh + Λ with gh = aαAzαGA
h and Λ = aαAzαEA (6.13)

We need to solve for EA.

There are three constraints from (6.8). The (x0, y0) and u0 are extracted from the

symmetric matrix S = egS0 via (4.32) and (4.33). On the other hand, requiring (6.8) gives

(x0, y0, u0) in terms of h:

x0 = −(g2
hS0)35

(g2
hS0)33

y0 =

√

(g2
hS0)33(g2

hS0)55 − (g2
hS0)235

(g2
hS0)33

u0 =
1

√

(g2
hS0)33(g2

hS0)55 − (g2
hS0)235

(6.14)

Therefore, defining Π ≡ (eg − g2

h
2 )S0, Π has to satisfy three constaints:

Π33 = Π35 = Π55 = 0 (6.15)

in order for (6.14) to hold for arbitrary h. Using the unfixed degree of freedom in the h’s

to set 〈C,Gh〉 = 0, (6.6) becomes

Q = S0

(

k +
1

2
[k,Λ]

)

S0 (6.16)

The zero Taub-NUT charge condition in (6.16) imposes the fourth constraint on Λ: the

(3,2)-element of S0(k + 1
2 [k,Λ])S0 for arbitrary k has to vanish. Combining with (6.15), we

have 4 constraints to fix EA to be:

E1 = −E3 = − 1

1 + z2
E2 = −E4 =

z

1 + z2
(6.17)

The remaining 4 conditions in the coupled equations (6.16) determine CA in the BPS

generator kBPS = aαAzαCA to be

C1 =
√

2
−q0 − q1z − 3p1z2 + p0z3

(1 + z2)2

C2 =
√

2
− q1

3 − (2p1 − v0)z + (p0 + 2 q1

3 )z2 + p1z3

(1 + z2)

C3 =
√

2
−p1 + (p0 + 2 q1

3 )z + (2p1 − v0)z
2 − q1

3 z3

(1 + z2)

C4 =
√

2
p0 + 3p1z − q1z

2 + q0z
3

(1 + z2)2
(6.18)
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The GA
h are then determined by GA

h = aαAzACA(Q → h, z). Using the solution of CA and

GA
h , we see the product 〈CA, GA

h 〉 is proportional to the symplectic product of (pI , qI) and

(hI , hI):

〈CA, GA
h 〉 =

2

1 + z2
< Q,h > where < Q,h >≡ p0h0 + p1h1 − q1h

1 − q0h
0 (6.19)

The condition 〈CA, GA
h 〉 = 0 is then the integrability condition on h:

< Q,h >= p0h0 + p1h1 − q1h
1 − q0h

0 = 0 (6.20)

Substituting the expressions of CA and GA in terms of (pI , qI) into (6.2), we obtain

the BPS attractor flow in terms of the charges (pI , qI). In particular, the attractor values

are

x∗
BPS = − p0q0 + p1 q1

3

2[(p1)2 + p0 q1

3 ]
y∗BPS =

√

J4(p0, p1, q1

3 , q0)

2[(p1)2 + p0 q1

3 ]
(6.21)

where J4(p
0, p1, q1, q0) is the quartic E7(7) invariant:

J4(p
0, p1, q1, q0) = 3(p1q1)

2 − 6(p0q0)(p
1q1) − (p0q0)

2 − 4(p1)3q0 + 4p0(q1)
3 (6.22)

thus J4(p
0, p1, q1

3 , q0) is the discriminant of charge. The attractor values match those from

the compactification of Type II string theory on diagonal T 6, with q1 → q1

3 . The attractor

value of u is

u∗
BPS =

1
√

J4(p0, p1, q1

3 , q0)
(6.23)

The constraint on h from u0 = 1 is then J4(h
0, h1, h1

3 , h0) = 1.

Now we will show that the geodesic we constructed above indeed reproduces the at-

tractor flow given by replacing charges by the corresponding harmonic functions in the

attractor moduli. Using the properties of Λ, we have proved that, in terms of k and g, the

flow of (x, y) can be generated from the attractor value by replacing k with the harmonic

function kτ + gh:

x(τ) = x∗(k → kτ + gh) y(τ) = y∗(k → kτ + gh) (6.24)

Since k and gh have the same twistor z, this is equivalent to replacing the CA with the

harmonic function CAτ + GA
h while leaving the twistor z fixed:

x(τ) = x∗(CA → CAτ + GA
h , z) y(τ) = y∗(CA → CAτ + GA

h , z) (6.25)

Since CA is linear in Q and GA
h linear in h, and since z drops out after plugging in the

solution of CA in terms of (Q, z) and GA
h in terms of (h, z), this proves that the flow of

(x0, y0) is given by replacing the charges in the attractor moduli by the corresponding

harmonic functions:

xBPS(τ) = x∗
BPS(Q → Qτ + h) yBPS(τ) = y∗BPS(Q → Qτ + h) (6.26)

The integrability condition < Q,h >= 0, in terms of H = Qτ + h, is

< H, dH >= 0 (6.27)
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6.2 Non-BPS attractor flow

6.2.1 Lifting a geodesic to 4D

Similar to the BPS attractor flow, the non-BPS flow is generated by M(τ) = e(kτ+g)/2,

and (x, y) can be extracted from the symmetric matrix S(τ) by (4.32) and the relevant

elements of S(τ) are given by (6.2). The only difference is that now {αB , βB , γB , δB , ǫB , ζB}
are changed into the non-BPS counterparts {αNB, βNB, γNB, δNB, ǫNB, ζNB}, which can be

written in terms of Hαa ≡ Cαaτ + Gαa and z:

αNB(τ) = −((H21H12 − H22H11)(z2 − 1)2 + (H22)2z2 − 2zH12H22 + (H12)2)

βNB(τ) = (z2 − 1)(H11 − H21z) − 3z2H22 + 2zH12 + H22

γNB(τ) = (z2 − 1)(2z(H11H22 − H12H21) + H22H12) + z((H22)2 − (H12)2)

δNB(τ) =
1

2
(z(1 + z2)H11 + z2(3H12 − H21) − 2H22z + (H12 − H21))

ǫNB(τ) = (4H11H22 − H12(H12 + 4H21))z2 − 2H12H22z − (H22)2

ζNB(τ) = 2(H11z2 + (2H12 + H21)z + H22) (6.28)

Note that H22

H12 = u is fixed, independent of τ . The non-BPS flow written in terms of (Hαa, z)

has the same simple form as the BPS flow, i.e. the scalars are rational functions with both

the numerator and denominator being only quadratic. This is due to the nilpotency of

the generator: k3 = 0. Again, the attractor values are reached when τ → ∞, and the

asymptotic moduli can be expressed in terms of (Gαa, z) by extraction from S = egS0.

Unlike the BPS case, there are only eight parameters in kNonBPS and gNonBPS: the two

twistors (z, u) and (Cαa, Gαa) under the constraints that

u =
C22

C12
=

G22

G12
(6.29)

Therefore, while kBPS and gBPS can parameterize arbitrary (pI , qI) and (x0, y0) while leav-

ing (z, u) free, all the parameters in kNonBPS and gNonBPS, including (z, u), will be fixed.

The attractor point in terms of Cαa is

x∗
NonBPS =

γNB(Hαa → Cαa)

ǫNB(Hαa → Cαa)

y∗NonBPS =

√

αNB(Hαa → Cαa)ǫNB(Hαa → Cαa) − γ2
NB(Hαa → Cαa)

ǫNB(Hαa → Cαa)
(6.30)

with z given by

1

2

(

−3C12 − C21 + z
(

(z2 − 3)C11 + 3z(C12 + C21) + 6C22
))

= 0 (6.31)

As in the BPS case, the charges of the black hole are read off from the current J using (4.34).

We have checked that the attractor point is a non-supersymmetric critical point of the black

hole potential VBH = |Z|2 + |DZ|2:

∂VBH = 0 and DZ 6= 0 (6.32)
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Hx*,y*L

Hx1,y1L

Hx2,y2L

Hx3,y3L

Hx4,y4L

Hx5,y5L

-0.5 0.5 1.0 1.5
x

1

2

3

4

5

y

Figure 4: Sample non-BPS flow. The attractor point is labeled (x∗, y∗). The initial points of

each flow are given by: (x1 = 0.539624, y1 = 5.461135), (x2 = 1.67984, y2 = 0.518725), (x3 =

−0.432811, y3 = 0.289493), (x4 = 1.28447, y4 = 1.49815), (x5 = −0.499491, y5 = 0.181744)

It reproduces the results reported in the literature [9]. An example of the non-BPS at-

tractor flow is shown in figure 4, with (p0, p1, q1, q0) = (5, 2, 7, 3) and attractor point

(x∗, y∗) = (−0.323385, 0.580375). Note that J4(5, 2, 7/3, 3) < 0, so this is indeed a non-BPS

black hole. Unlike the BPS attractor flow, all the non-BPS flows starting from different

asymptotic moduli have the same tangent direction at the attractor point. The mass matrix

of the black-hole potential at a BPS critical point has two identical eigenvalues, whereas

the eigenvalues at a non-BPS critical point are different. The common tangent direction

for the non-BPS flows corresponds to the eigenvector associated with the smaller mass.

6.2.2 4D solution for given set of charges

We now discuss how to construct the non-BPS black hole solution for a specific set of

charges (pI , qI).

One major difference between the non-BPS case and the BPS case is that

[kNonBPS, gNonBPS] = 0 (6.33)

automatically, since the forms of (w1, w2) and (m1,m2) guarantee that w1·m2 = w2·m1 = 0.
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Thus the charge equation (6.6) becomes simply

QNonBPS = S0(kNonBPS)S0 (6.34)

These five coupled equations determine the two twistors (z, u) and Cαa in terms of (pI , qI).

Similar to the BPS case, the four equations which determine the D-brane charge allow us

to write Cαa in terms of the charges (p0, p1, q1, q0) and the twistor z via

C11 =
(−2q0 + 6(p1 − q0)z

2 + 4(p0 + q1)z
3 − 6p1z4)√

2(1 + z2)3

C12 =
(p0 + q1

3 ) − 2(2p1 − q0)z − (p0 + 5 q1

3 )z2 + 2p1z3

√
2(1 + z2)2

C21 =
(p0 − q1) − 4q1z

2 + 4(3p1 − q0)z
3 + (3p0 + q1)z

4

√
2(1 + z2)3

C22 =
2p1 + (p0 + 5 q1

3 )z − 2(2p1 − q0)z
2 − (p0 + q1

3 )z3

√
2(1 + z2)2

(6.35)

and u = C22

C12 . In contrast to the BPS case, the Gαa do not enter the equations and therefore

cannot be used to eliminate the twistor z. Requiring the Taub-NUT charge to vanish gives

the following degree-six equation for the z:

p0z6 + 6p1z5 − (3p0 + 4q1)z
4 − 4(3p1 − 2q0)z

3 + (3p0 + 4q1)z
2 + 6p1z − p0 = 0 (6.36)

The three parameters in gNonBPS, namely, Gαa with the constraint G22

G12 = u are then fixed

by the given asymptotic moduli (x0, y0) and u0 = 1.

Similar to the BPS flow, the full non-BPS flow can be generated from the attractor

value by replacing Cαa with the harmonic function Hαa(τ) = Cαaτ + Gαa, while leaving

z unchanged as in (6.25). However, there are two major differences. First, the harmonic

functions Hαa have to satisfy the constraint

H22(τ)

H12(τ)
= u =

C22

C12
=

G22

G12
(6.37)

Note that this does not impose any constraint on the allowed asymptotic moduli since there

are still three degrees of freedom in Gαa to account for (x0, y0, u0). We will see later that it

instead imposes a stringent constraint on the allowed D-brane charges in the multi-centered

non-BPS solution.

Secondly, unlike the BPS flow, replacing Cαa in the attractor moduli by the harmonic

function Hαa(τ) is not equivalent to replacing the charges Q with H = Qτ +h as in (6.26).

The twistor z here is no longer free, but is determined in terms of the charges as a root of the

degree-six equation (6.36), so replacing Q by Qτ + h, for generic Q and h, would not leave

z invariant. Therefore, the generic non-BPS flow cannot be given by the naive harmonic

function procedure, as proposed by Kallosh et al [19]. Next, we will define the subset of the

non-BPS single-centered flow that can be constructed by the harmonic function procedure.

When the attractor has only D4 − D0 charges, namely, Q40 = (0, p1, 0, q0), (6.36) has

a root z = 0, which is independent of the value of charges. If the asymptotic moduli h is
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also of the form of h40 = (0, h1, 0, h0), replacing Q40 by Q40τ +h40 would leave the solution

z = 0 invariant. Now we will use the duality symmetry to extend the subset to a generic

charge system with restricted asymptotic moduli.

The one-modulus system can be considered as the STU attractor with the three moduli

(S, T, U) identified. Since the STU model has SL(2, Z)3 duality symmetry at the level of

the equations of motion, the one-modulus system has an SL(2, Z) duality symmetry coming

from identifying the three SL(2, Z) symmetries of the STU model. That is, the one-modulus

system is invariant under the following element of SL(2, Z)3

Γ̂ =

(

a b

c d

)

⊗
(

a b

c d

)

⊗
(

a b

c d

)

with ad − bc = 1 (6.38)

The modulus z = x + iy transforms as

z → Γ̂z =
az + b

cz + d
(6.39)

and the transformation on the charges is given by [36]. A generic charge (p0, p1, q1, q0) can

be reached by applying the transformation Γ̂ on a D4 − D0 system.

Under the aforementioned transformation, a D4 − D0 system transforms into Γ̂Q40

Q40 =











0

p1

0

q1











→ Γ̂Q40 =











−c(3d2p1 + c2q0)

d(2bc + ad)p1 + ac2q0

3(b(bc + 2ad)p1 + a2cq0)

a(3b2p1 + a2q0)











The solution of the twistor z with the new charges Γ̂Q40 is

z =
a ±

√
a2 + c2

c
(6.40)

independent of the D4 − D0 charges we started with. Now given an arbitrary charge Q,

there exists a transformation Γ̂Q such that Q = Γ̂QQ40 for some Q40. The twistor z remains

invariant under Q → Qτ + Γ̂Qh40 for arbitrary h40. We conclude that the non-BPS single-

centered black holes that can be constructed via the naive harmonic function procedure

are only those with (Q,h) being the image of a single transformation Γ̂ on the (Q40, h40)

from a D4 − D0 system:

xNB(τ) = x∗
NB(Γ̂Q40 → Γ̂Q40τ + Γ̂h40) yNB(τ) = y∗NB(Γ̂Q40 → Γ̂Q40τ + Γ̂h40) (6.41)

Since we are considering an arbitrary charge system, the constraint is on the allowed values

of h.

7. Multi-centered attractor flows in G2(2)/(SL(2, R) × SL(2, R)) model

As proven in the pure gravity system, the multi-centered attractor solutions are given by

exponentiating the matrix harmonic function K(~x):

S(~x) = eK(~x)S0 (7.1)
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with K(~x) having the same properties as the generator k:

K3(~x) = 0 and K2(~x) rank two (7.2)

We now describe how to formulate K(~x) for multi-centered solutions in G2(2).

The K(~x) satisfying all the above constraints is constructed as

K(~x) =
∑

a=1,2

[vaWa(~x)T + Wa(~x)vT
a ]S0 (7.3)

with va being the same two constant null vectors in k, and the multi-centered harmonic

function

Wa(~x) =
∑

i

(wa)i
|~x − ~xi|

+ ma (7.4)

is everywhere orthogonal to va. The two 7-vectors (m1,m2) contain the information of

asymptotic moduli and have the same form as (w1, w2). Write K(~x) as K(~x) =
∑

i
ki

|~x−~xi|+g

where

ki =
∑

a=1,2

[va(wa)
T
i + (wa)iv

T
a ]S0 and g =

∑

a=1,2

[vam
T
a + mav

T
a ]S0 (7.5)

Since v only depends on the twistor (z, u), and (w1, w2) are linear in CA or Cαa, the above

generating procedure is equivalent to replace CA or Cαa by the multi-centered harmonic

functions while keeping the twistor (z, u) fixed.

Next we discuss the properties of the BPS multi-centered attractor solution and non-

BPS ones separately, since they are very different in character.

7.1 BPS multi-centered solutions

In constrast with the multi-centered solutions in pure gravity, now the second term of the

current J = ∇K + 1
2 [∇K,K] does not vanish automatically since

[kBPS
i , kBPS

j ] 6= 0 and [kBPS
i , gBPS] 6= 0 (7.6)

Therefore, the centers are no longer free, and we cannot simply read off the charges from J .

Instead, we need to solve for CA
i and GA in a set of 5N coupled equations. The divergence

of the current is

∇ · J = 4π
∑

i

δ(~x − ~xi)S0(ki +
1

2
[ki, g] +

1

2

∑

j

[ki, kj ]

|~xi − ~xj |
)S0 (7.7)

Using Qi to denote the charge matrix which relates to the D-brane charge {p0, p1, q1, q0}i

as in (4.36), and with Q32 as the vanishing NUT charge, we have 5N coupled equations

from Qi = 1
4π

∫

i ∇ · J :

Qi = S0

(

ki +
1

2
[ki, g] +

1

2

∑

j

[ki, kj ]

|~xi − ~xj |

)

S0 (7.8)
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The generators of the multi-centered BPS attractor solution {ki} and g have 4(N + 1) + 2

parameters in total: the two twistors (z, u) and {CA
i , GA}. On the left hand side of (7.8),

there are also 3N − 3 degrees of freedom from the position of the centers ~xi. On the

other hand, a generic N -centered attractor solution has 4N D-brane charges (pI , qI), and

three additional constraints from the asymptotic moduli (x0, y0) and u0 = 1. As we will

show, like the single-centered BPS solution, the three asymptotic moduli, together with

the vanishing of the total Taub-NUT charge, determine the 4 GA inside g. Moreover, as

in the single-centered case, we can solve CA
i in terms of the 4D D-brane charges Qi while

leaving (z, u) unfixed. The remaining N − 1 zero Taub-NUT charge conditions at each

center will impose N − 1 constraints on the distances between the N -centers ~xi.

First, integrating over the circle at the infinity,
∑

i Qi = 1
4π

∫

∇ · J gives the sum of

the above N matrix equations:

Qtot =
∑

i

Qi = S0

(

∑

i

ki +
1

2
[
∑

i

ki, g]

)

S0 (7.9)

which is the same as the one for the single-center attractor with charge Qtot. This deter-

mines g to be g = gh +Λ, same as the one for single-centered attractor in (6.13). As in the

single centered case, h is fixed by the asymptotic moduli (x0, y0) by

x0 = x∗
BPS(Q → h) y0 = y∗BPS(Q → h) (7.10)

and the two constraints:

< Qtot, h >= 0 J4

(

h0, h1,
h1

3
, h0

)

= 1 (7.11)

We have used the vanishing of the total Taub-NUT charge to determine Λ. Next, we will

use the remaining coupled 5N − 1 equations to solve for the 4N {CA
i } and impose N − 1

constraints on the relative positions between the N centers {~xi} where i = 1, · · · , N .

The tentative solutions of CA
i are given by (6.18) with (pI , qI) replaced by (pI

i , qI,i).

The flow generator of each center ki is then ki = aαAzαCA
i . Substituting the solution of ki

and g = gh + Λ into (7.8), and using

[ki, gh] = 2 < Qi, h > Θ [ki, kj ] = 2 < Qi, Qj > Θ (7.12)

where all the ki’s and gh have the same value for the twistor z, we get

Qi = S0(ki+ < Qi, h > Θ +
1

2
[ki,Λ] +

∑

j

< Qi, Qj >

|~xi − ~xj |
Θ)S0 (7.13)

Just as in the single-centered case, the solution of ki and the form of Λ guarantee that

Qi = S0(ki +
1

2
[ki,Λ])S0 (7.14)

We see that as long as the following integrability condition is satisfied:

< Qi, h > +
∑

j

< Qi, Qj >

|~xi − ~xj|
= 0 (7.15)
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the ki and g given above indeed produce the correct multi-centered attractor solution. Just

like in the single-centered case, the multi-centered solution flows to the correct attractor

moduli (x∗
i , y

∗
i ) near each center, independent of the value of z. It also follows that the

multi-centered solution can be generated by replacing the charges inside the attractor value

by the multi-centered harmonic function:

xBPS(~x) = x∗
BPS

(

Q →
∑

i

Qi

|~x − ~xi|
+ h

)

yBPS(~x) = y∗BPS

(

Q →
∑

i

Qi

|~x − ~xi|
+ h

)

(7.16)

The sum of the N equations in the integrability condition (7.15) reproduces the con-

straint on h: < Qtot, h >= 0. Thus the remaining N − 1 equations impose N − 1 con-

straints on the relative positions between the N centers {~xi} with i = 1, · · · , N . From (A.5)

and (4.6), we see that ∗dω is given by J23. Defining the angular momentum ~J by

ωi = 2ǫijkJ
j xk

r3
as r → ∞ (7.17)

we see that there exists a nonzero angular momentum given by

~J =
1

2

∑

i<j

~xi − ~xj

|~xi − ~xj|
〈Qi, Qj〉 (7.18)

Thus we have shown that our multi-centered BPS attractor solution reproduces the one

found in [18].

7.2 Non-BPS multi-centered solutions

For given (z, u) and {Cαa
i , Gαa}, the non-BPS multi-centered solution is the same as the

single-centered one as in (6.28) with Hαa(τ) replaced by the multi-centered harmonic func-

tion Hαa(~x) =
∑

i
Cαa

i
|~x−~xi| + Gαa satisfying the constraint

u =
H22

i (~x)

H12
i (~x)

=
C22

i

C12
i

=
G22

G12
(7.19)

Accordingly, the attractor values at each center is the same as (6.30) with the corresponding

Cαa
i . The asymptotic moduli are obtained by extraction from S = egS0.

The equation of motion for the non-BPS multi-centered solution simplifies a great deal

since

[∇K(~x),K(~x)] = 0 (7.20)

automatically, following from the fact that for the non-BPS system:

(w1)i · (w2)j = (w1)i · m2 = (w2)i · m1 = 0 (7.21)

which are guaranteed by the forms of NonBPS (w1, w2)i and (m1,m2). Therefore, the 5N

equations (7.8) decouple into N sets of 5 coupled equations:

Qi = S0(ki)S0 (7.22)
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Equation (7.22) differs greatly from the BPS counterpart (7.8). Firstly, the generators

of the multi-centered non-BPS attractor solution {ki} and g have 3(N +1)+2 parameters:

the two twistors (z, u) and {Cαa
i , Gαa} with the constraint (7.19). In constrast to the BPS

case, g does not enter the equation. Thus we can simply use the three asymptotic moduli,

without invoking the zero Taub-NUT condition, to determine the 3 Gαa inside g. Secondly,

unlike the BPS multi-centered solution, the position of the centers ~xi do not appear in the

equation, therefore there will be no constraint imposed on them: the centers are free.

Last but not least, the remaining 3N + 2 parameters in (z, u) and Cαa are not enough

to parameterize a generic N -centered attractor solution, which has 4N D-brane charges

(pI
i , qI,i). Accordingly, the multi-centered non-BPS attractor generated by this ansatz will

not have arbitrary charges. Combining with the fact that ~xi do not appear in the R.H.S of

the equation, we find that all the N vanishing Taub-NUT charge conditions can only act

on the charges on the l.h.s. We conclude that, in total, there will be 2N − 2 constraints on

the allowed charges.

Now we will show in detail the derivation of the constraints. First, like in the single-

centered NonBPS solution, the absence of the Taub-NUT charge at infinity fixes z via

∑

i

Qi = S0

(

∑

i

ki

)

S0 (7.23)

The solution is the same as the solution to (6.36) with the charges replaced by the total

charges of N centers: z = z(Q → ∑

i Qi). Since all the N centers share the same twistor

z, the absence of the NUT charge at each center imposes N − 1 constraints on the allowed

charges Qi: all z(Qi) have to be equal.

The remaining 4N equations in (7.22) determine Cαa in terms of z and Qi. Since the

N-centers decouple, (7.22) for each center is the same as the single-center one (6.34). Thus

the solution of Cαa
i is given by (6.35) with (pI , qI) replaced by (pI

i , qI,i). Again, since all the

centers share the same twistor u, the condition (7.19) imposes another N − 1 constraints

on the allowed charges. Solving these 2N − 2 constraints, we see all the charges {Qi} are

the image of a single transformation Γ̂ on a multi-centered D4 − D0 system Q40,i:

Qi = Γ̂Q40,i (7.24)

The charges at different centers are all mutually local

〈Qi, Qj〉 = 0 (7.25)

Except for the constraint on the charges, the N centers are independent, and there is no

constraint on the position of the centers. A related fact is that the the angular momentum

is zero.

Like the non-BPS single-centered case, though the multi-centered solution can be gen-

erated from the attractor value by replacing Cαa with the multi-centered harmonic func-

tion Hαa(~x) =
∑

i
Cαa

i
|~x−~xi| + Gαa under the constraint (7.19), while leaving z unchanged as

in (6.25), the generic solution cannot be generated via the harmonic function procedure

used in the BPS case, namely, by replacing the charges inside the attractor value by the
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corresponding multi-centered harmonic functions. The reason is again due to the fact that

the twistor z, being a function of charges, does not remain invariant under this substitu-

tion of charges by harmonic functions. The multi-centered non-BPS solutions that can be

generated by the harmonic function procedure are those with {Qi, h} being the image of a

single Γ̂ on the {Q40,i, h40} of a pure D4 − D0 system:

xNB(~x) = x∗
NB

(

Γ̂Q40 →
∑

i

Γ̂Q40,i

|~x − ~xi|
+ Γ̂h40

)

yNB(~x) = y∗NB

(

Γ̂Q40 →
∑

i

Γ̂Q40,i

|~x − ~xi|
+ Γ̂h40

)

(7.26)

It appears that the existence of a simple linear ansatz for “superimposing” single center

solutions exists in general only for mutually local extremal black holes, and only in the

supersymmetric case does it extend to mutually non-local centers.

To summarize, the non-BPS multi-centered solution is different from the BPS case

because it imposes no constraints on the position of the centers, but instead on the allowed

charges Qi: the choice of charges at each center are restricted to a three-dimensional

subspace, and they are mutually local. The result is that the centers can move freely, and

there is no angular momentum in the system. It does not have interesting moduli spaces

of centers with mutually non-local charges, so it is as “boring” as the pure gravity case.

8. Conclusion and discussion

In this paper, we find exact single-centered and multi-centered black hole solutions in

theories of gravity which have a symmetric 3D moduli space. The BPS and extremal

non-BPS single-centered solutions correspond to certain geodesics in the moduli space.

We construct these geodesics by exponentiating different types of nilpotent elements in the

coset algebra. Using the Jordan form of these nilpotent elements, we are able to write them

down in closed explicit form. Furthermore, we can use a symmetric matrix parametrization

to recover the metric and full flow of the scalars in four dimensions.

We have also generalized the geodesics to find solutions for non-BPS and BPS multi-

centered black holes. The BPS multi-centered solution reproduces the known solution of

Bates and Denef. Given our assumption that the 3D spatial slice is flat, we find that a non-

BPS multi-centered black hole is very different from its BPS counterpart. It is constrained

to have mutually local charges at all of its centers and therefore carries no intrinsic angular

momentum. It is possible that if we dropped this assumption, we could find more general

non-BPS multi-centered solutions. Such configurations would probably be amenable to

exact analysis only in the axially symmetric case, using inverse scattering methods.

There are many other avenues for future work. One could explore nilpotent elements

in other symmetric spaces, and see whether non-BPS bound states with nonlocal charges

exist. In particular, it would be interesting to study E8(8)/SO∗(16), which is the 3d moduli

space for d = 4,N = 8 supergravity. We would also like to find a way to modify our method

so that we can apply it to non-symmetric homogeneous spaces, and eventually to generic
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moduli spaces. We could then study the much larger class of non-BPS extremal black holes

in generic N = 2 supergravities.
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A. Derivation of the moduli space M3D

Here we briefly review the derivation of the 3d moduli space M3D from the c∗-map of the

4D supergravity coupled to nV vector multiplets [31 – 33].

The bosonic part of the action for the N = 2 supergravity coupled to nV vector-

multiplets is:

S = − 1

16π

∫

d4x

√

g(4)
[

R − 2gij̄dzi ∧ ∗4dz̄j̄ − F I ∧ GI

]

(A.1)

where the ranges of the indices are i, j = 1, . . . , nV and I = 0, 1, . . . , nV , and GI =

(ReN )IJF J + (ImN )IJ ∗ F J . The complex symmetric matrix NIJ is defined by

FI = NIJXJ DiFI = N IJDiX
J (A.2)

For model endowed with a prepotential F (X),

NIJ = FIJ + 2i
(ImF · X)I(ImF · X)J

X · ImF · X (A.3)

where FIJ = ∂I∂JF (X).

After reduction on the time-like isometry, the action is S = − 1
8π

∫

dt
∫

d3x L. The 3D

lagrangian L has three parts: L = Lgravity + Lmoduli + Le.m where

Lgravity = −1

2

√
g R + dU ∧ ∗dU − 1

4
e4Udω ∧ ∗dω

Lmoduli = gij̄dzi ∧ ∗dz̄j̄ (A.4)

Le.m. =
1

2
e−2U (ImN )IJdAI

0 ∧ ∗dAJ
0 +

1

2
e2U (ImN )IJ(dAI +AI

0dω) ∧ ∗(dAJ +AJ
0dω)

+(ReN )IJdAI
0 ∧ (dAJ + AJ

0dω)

The dual scalars for ω and AI are defined by:

e2U (ImN )IJ ∗ (dAJ + AJ
0dω) + (ReN )IJdAJ

0 = −dφAI

e4U
∗ dω + (AI

0dφAI − φAIdAI
0) = −dφω (A.5)
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After renaming the variables φω → σ,AI
0 → AI , φAI → BI , we obtain the 3d lagrangian in

terms of scalars only:

L = −1

2

√
g R + dU ∧ ∗dU +

1

4
e−4U (dσ + AIdBI − BIdAI) ∧ ∗(dσ + AIdBI − BIdAI)

+gij̄(z, z̄)dzi ∧ ∗dz̄j̄ +
1

2
e−2U (ImN )IJdAI ∧ ∗dAJ

+
1

2
e−2U (ImN−1)IJ(dBI + (ReN )IKdAK) ∧ ∗(dBJ + (ReN )JLdAL)

= −1

2

√
g R + gmn∂aφ

m∂aφn (A.6)

where, as before, φn are the 4(nV + 1) moduli fields: φn = {U, zi, z̄ ī, σ,AI , BI}, and gab is

the space time metric, gmn is the moduli space metric. Therefore, the moduli space M3D

has metric:

ds2 = dU · dU+
1

4
e−4U (dσ+AIdBI−BIdAI) · (dσ+AIdBI−BIdAI)+gij̄(z, z̄)dzi · dz̄j̄

+
1

2
e−2U [(ImN−1)IJ(dBI + NIKdAK) · (dBJ + N JLdAL)] (A.7)

It is a para-quaternionic-Kähler manifold. Since the holonomy is reduced from SO(4nV +

4)) to Sp(2, R) × Sp(2nV + 2, R), the vielbein has two indices (α,A) transforming under

Sp(2, R) and Sp(2nV + 2, R), respectively. The para-quaternionic vielbein is the analytical

continuation of the quaternionic vielbein computed in [34]:

V αA =











iu v

ea iEa

−iĒā ēā

−v̄ iū











The 1-forms are defined as

u ≡ eK/2−UXI(dBI + NIJdAJ)

ea ≡ ea
i dzi

Ea ≡ e−Uea
i g

ij̄eK/2D̄j̄X
I(dBI + NIJdAJ)

v ≡ −dU +
i

2
e−2U (da + AIdBI − BIdAI) (A.8)

where ea
i is the veilbein of the 4D moduli space, and the bar denotes complex conjugate.

The line element is related to the vielbein by

ds2 = −u · ū + gab̄e
a · ēb̄ − gab̄E

a · Ē b̄ + v · v̄ = ǫαβǫABV αA ⊗ V βB (A.9)

where ǫαβ and ǫAB are the anti-symmetric tensors invariant under Sp(2, R) ∼= SL(2, R) and

Sp(2nv + 2, R).

The isometries of the M∗
3D descends from the symmetry of the 4D system. The gauge

symmetries in 4D gives the shifting isometries of M∗
3D:

AI −→ AI + ∆AI

BI −→ BI + ∆BI (A.10)

σ −→ σ + ∆σ + ∆BIA
I − ∆AIBI
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The conserved currents and charges are given by (4.5) and the discussion thereafter.
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